If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40t-4.9t^2+18=0
a = -4.9; b = 40; c = +18;
Δ = b2-4ac
Δ = 402-4·(-4.9)·18
Δ = 1952.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-\sqrt{1952.8}}{2*-4.9}=\frac{-40-\sqrt{1952.8}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+\sqrt{1952.8}}{2*-4.9}=\frac{-40+\sqrt{1952.8}}{-9.8} $
| -25y+27=-8 | | 2(-6k-5)=-15+7k | | 1/3x+4=x=2 | | (x-8)/(5)+(8)/(5)=-(x)/(3) | | 105+(x+5)=180 | | J=93.14p | | ((2/3)x)+((1/4)x)=(x+2) | | -1/2y+4/1=-9/10y+2/5 | | 7x(9x)= | | 15+15+(x+5)=180 | | (2/3)x+0.25x=x+2 | | (2/3)x+0.25x=x | | 2/5x+90+(3/4x-2)=180 | | 2-4(2x-3)=-2 | | -1/2y+4=-9/10y+2/5 | | d=|300−48| | | X+7x=9;x=-2,0,4 | | 13.03=2g+3.91 | | -2(-6-5)=-15+7k | | 7-m/9=13 | | 4x+8x0.8=40 | | 22•12y+6=6(2y+1)= | | 3(2x+1)^2=36 | | 16x3-2=0 | | 2/5a-1/5= | | 224=14v | | -126=-6(5-2x) | | 5=3.7-1.2x | | 1x=78 | | 0x=78 | | 6x-9+3x=21 | | 48h=553+265 |